(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
revApp#2(Nil, x16) → x16
revApp#2(Cons(x6, x4), x2) → revApp#2(x4, Cons(x6, x2))
dfsAcc#3(Leaf(x8), x16) → Cons(x8, x16)
dfsAcc#3(Node(x6, x4), x2) → dfsAcc#3(x4, dfsAcc#3(x6, x2))
main(x1) → revApp#2(dfsAcc#3(x1, Nil), Nil)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
revApp#2(Nil, x16) → x16
revApp#2(Cons(x6, x4), x2) → revApp#2(x4, Cons(x6, x2))
dfsAcc#3(Leaf(x8), x16) → Cons(x8, x16)
dfsAcc#3(Node(x6, x4), x2) → dfsAcc#3(x4, dfsAcc#3(x6, x2))
main(x1) → revApp#2(dfsAcc#3(x1, Nil), Nil)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
revApp#2(Nil, x16) → x16
revApp#2(Cons(x6, x4), x2) → revApp#2(x4, Cons(x6, x2))
dfsAcc#3(Leaf(x8), x16) → Cons(x8, x16)
dfsAcc#3(Node(x6, x4), x2) → dfsAcc#3(x4, dfsAcc#3(x6, x2))
main(x1) → revApp#2(dfsAcc#3(x1, Nil), Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
revApp#2, dfsAcc#3
(6) Obligation:
Innermost TRS:
Rules:
revApp#2(
Nil,
x16) →
x16revApp#2(
Cons(
x6,
x4),
x2) →
revApp#2(
x4,
Cons(
x6,
x2))
dfsAcc#3(
Leaf(
x8),
x16) →
Cons(
x8,
x16)
dfsAcc#3(
Node(
x6,
x4),
x2) →
dfsAcc#3(
x4,
dfsAcc#3(
x6,
x2))
main(
x1) →
revApp#2(
dfsAcc#3(
x1,
Nil),
Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
Generator Equations:
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Nil:Cons4_0(x))
gen_Leaf:Node5_0(0) ⇔ Leaf(hole_a2_0)
gen_Leaf:Node5_0(+(x, 1)) ⇔ Node(Leaf(hole_a2_0), gen_Leaf:Node5_0(x))
The following defined symbols remain to be analysed:
revApp#2, dfsAcc#3
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
revApp#2(
gen_Nil:Cons4_0(
n7_0),
gen_Nil:Cons4_0(
b)) →
gen_Nil:Cons4_0(
+(
n7_0,
b)), rt ∈ Ω(1 + n7
0)
Induction Base:
revApp#2(gen_Nil:Cons4_0(0), gen_Nil:Cons4_0(b)) →RΩ(1)
gen_Nil:Cons4_0(b)
Induction Step:
revApp#2(gen_Nil:Cons4_0(+(n7_0, 1)), gen_Nil:Cons4_0(b)) →RΩ(1)
revApp#2(gen_Nil:Cons4_0(n7_0), Cons(hole_a2_0, gen_Nil:Cons4_0(b))) →IH
gen_Nil:Cons4_0(+(+(b, 1), c8_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
revApp#2(
Nil,
x16) →
x16revApp#2(
Cons(
x6,
x4),
x2) →
revApp#2(
x4,
Cons(
x6,
x2))
dfsAcc#3(
Leaf(
x8),
x16) →
Cons(
x8,
x16)
dfsAcc#3(
Node(
x6,
x4),
x2) →
dfsAcc#3(
x4,
dfsAcc#3(
x6,
x2))
main(
x1) →
revApp#2(
dfsAcc#3(
x1,
Nil),
Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
Lemmas:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Nil:Cons4_0(x))
gen_Leaf:Node5_0(0) ⇔ Leaf(hole_a2_0)
gen_Leaf:Node5_0(+(x, 1)) ⇔ Node(Leaf(hole_a2_0), gen_Leaf:Node5_0(x))
The following defined symbols remain to be analysed:
dfsAcc#3
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dfsAcc#3(
gen_Leaf:Node5_0(
n590_0),
gen_Nil:Cons4_0(
b)) →
gen_Nil:Cons4_0(
+(
+(
1,
n590_0),
b)), rt ∈ Ω(1 + n590
0)
Induction Base:
dfsAcc#3(gen_Leaf:Node5_0(0), gen_Nil:Cons4_0(b)) →RΩ(1)
Cons(hole_a2_0, gen_Nil:Cons4_0(b))
Induction Step:
dfsAcc#3(gen_Leaf:Node5_0(+(n590_0, 1)), gen_Nil:Cons4_0(b)) →RΩ(1)
dfsAcc#3(gen_Leaf:Node5_0(n590_0), dfsAcc#3(Leaf(hole_a2_0), gen_Nil:Cons4_0(b))) →RΩ(1)
dfsAcc#3(gen_Leaf:Node5_0(n590_0), Cons(hole_a2_0, gen_Nil:Cons4_0(b))) →IH
gen_Nil:Cons4_0(+(+(1, +(b, 1)), c591_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
revApp#2(
Nil,
x16) →
x16revApp#2(
Cons(
x6,
x4),
x2) →
revApp#2(
x4,
Cons(
x6,
x2))
dfsAcc#3(
Leaf(
x8),
x16) →
Cons(
x8,
x16)
dfsAcc#3(
Node(
x6,
x4),
x2) →
dfsAcc#3(
x4,
dfsAcc#3(
x6,
x2))
main(
x1) →
revApp#2(
dfsAcc#3(
x1,
Nil),
Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
Lemmas:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
dfsAcc#3(gen_Leaf:Node5_0(n590_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(+(1, n590_0), b)), rt ∈ Ω(1 + n5900)
Generator Equations:
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Nil:Cons4_0(x))
gen_Leaf:Node5_0(0) ⇔ Leaf(hole_a2_0)
gen_Leaf:Node5_0(+(x, 1)) ⇔ Node(Leaf(hole_a2_0), gen_Leaf:Node5_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
revApp#2(
Nil,
x16) →
x16revApp#2(
Cons(
x6,
x4),
x2) →
revApp#2(
x4,
Cons(
x6,
x2))
dfsAcc#3(
Leaf(
x8),
x16) →
Cons(
x8,
x16)
dfsAcc#3(
Node(
x6,
x4),
x2) →
dfsAcc#3(
x4,
dfsAcc#3(
x6,
x2))
main(
x1) →
revApp#2(
dfsAcc#3(
x1,
Nil),
Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
Lemmas:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
dfsAcc#3(gen_Leaf:Node5_0(n590_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(+(1, n590_0), b)), rt ∈ Ω(1 + n5900)
Generator Equations:
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Nil:Cons4_0(x))
gen_Leaf:Node5_0(0) ⇔ Leaf(hole_a2_0)
gen_Leaf:Node5_0(+(x, 1)) ⇔ Node(Leaf(hole_a2_0), gen_Leaf:Node5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
revApp#2(
Nil,
x16) →
x16revApp#2(
Cons(
x6,
x4),
x2) →
revApp#2(
x4,
Cons(
x6,
x2))
dfsAcc#3(
Leaf(
x8),
x16) →
Cons(
x8,
x16)
dfsAcc#3(
Node(
x6,
x4),
x2) →
dfsAcc#3(
x4,
dfsAcc#3(
x6,
x2))
main(
x1) →
revApp#2(
dfsAcc#3(
x1,
Nil),
Nil)
Types:
revApp#2 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: a → Nil:Cons → Nil:Cons
dfsAcc#3 :: Leaf:Node → Nil:Cons → Nil:Cons
Leaf :: a → Leaf:Node
Node :: Leaf:Node → Leaf:Node → Leaf:Node
main :: Leaf:Node → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
hole_a2_0 :: a
hole_Leaf:Node3_0 :: Leaf:Node
gen_Nil:Cons4_0 :: Nat → Nil:Cons
gen_Leaf:Node5_0 :: Nat → Leaf:Node
Lemmas:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Nil:Cons4_0(x))
gen_Leaf:Node5_0(0) ⇔ Leaf(hole_a2_0)
gen_Leaf:Node5_0(+(x, 1)) ⇔ Node(Leaf(hole_a2_0), gen_Leaf:Node5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
revApp#2(gen_Nil:Cons4_0(n7_0), gen_Nil:Cons4_0(b)) → gen_Nil:Cons4_0(+(n7_0, b)), rt ∈ Ω(1 + n70)
(20) BOUNDS(n^1, INF)